

Dual N-Channel Power MOSFET

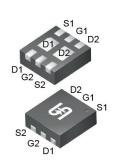
20V, 5.8A, 25mΩ

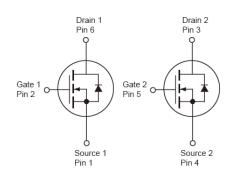
Features

- Halogen-Free according to IEC 61249-2-21
- Suited for 1.8V drive applications
- Low profile package
- RoHS Compliant

APPLICATION

- Battery Pack
- Load Switch


KEY PERFORMANCE PARAMETERS				
PARAMETER		VALUE	UNIT	
V_{DS}		20	V	
	$V_{GS} = 4.5V$	25		
R _{DS(on)} (max)	$V_{GS} = 2.5V$	35	mΩ	
	V _{GS} = 1.8V	55		
Q_g		7.7	nC	



Notes: Moisture sensitivity level: level 3. Per J-STD-020

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise noted)				
PARAMETER		SYMBOL	LIMIT	UNIT
Drain-Source Voltage		V_{DS}	20	V
Gate-Source Voltage		V_{GS}	±10	V
Continuous Drain Current (Note 1)	$T_C = 25^{\circ}C$		5.8	^
	$T_C = 100$ °C	I _D	3.48	A
Pulsed Drain Current (Note 2)		I _{DM}	23.2	Α
Total Power Dissipation @ T _C = 25°C		P _{DTOT}	0.62	W
Operating Junction and Storage Temperature Range		T _J , T _{STG}	- 55 to +150	°C

THERMAL PERFORMANCE				
PARAMETER	SYMBOL	LIMIT	TINU	
Junction to Ambient Thermal Resistance	R _{OJA}	200	°C/W	

Notes: $R_{\Theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistances. $R_{\Theta JA}$ is guaranteed by design while $R_{\Theta CA}$ is determined by the user's board design. $R_{\Theta JA}$ shown below for single device operation on FR-4 PCB in still air.

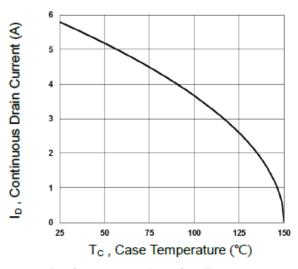
Taiwan Semiconductor

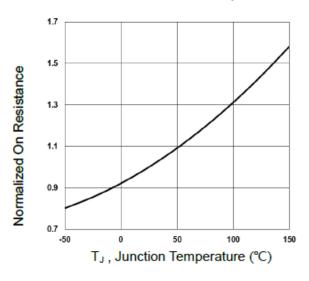
ELECTRICAL SPECIFICAT	FIONS (T _A = 25°C unles	s otherwise not	ed)			
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNIT
Static (Note 3)						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A$	BV _{DSS}	20			V
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	V _{GS(TH)}	0.4	0.6	0.8	V
Gate Body Leakage	$V_{GS} = \pm 10V, V_{DS} = 0V$	I _{GSS}			±100	nA
Zero Gate Voltage Drain Current	V _{DS} =16V, V _{GS} =0V	I _{DSS}			1	μA
	$V_{GS} = 4.5V, I_D = 4A$			20	25	
Drain-Source On-State Resistance	$V_{GS} = 2.5V, I_D = 3A$	R _{DS(on)}		27	35	mΩ
	$V_{GS} = 1.8V, I_D = 2A$			39	55	
Forward Transconductance	V _{DS} =10V, I _D =3A	g _{fs}		6.5		S
Dynamic (Note 4)						
Total Gate Charge		Q_g		7.7	11	
Gate-Source Charge	$V_{DS} = 10V, I_D = 4A,$	Q_{gs}		0.9	1	nC
Gate-Drain Charge	$V_{GS} = 4.5V$	Q_{gd}		2.4	5	
Input Capacitance	$V_{DS} = 10V, V_{GS} = 0V,$	C _{iss}		535	775	
Output Capacitance		C _{oss}		60	85	pF
Reverse Transfer Capacitance	f = 1.0MHz	C _{rss}		34	50	
Switching (Note 5)						
Turn-On Delay Time		t _{d(on)}		4.1	8	
Turn-On Rise Time	$V_{DD} = 10V, I_{D} = 1A,$	t _r		11.6	22	
Turn-Off Delay Time	$V_{GS} = 4.5V, R_G = 25\Omega$	t _{d(off)}		23.9	45	ns
Turn-Off Fall Time		t _f		7.6	14	
Source-Drain Diode (Note 3)		•		•	•	
Continuous Source Current		I _S			5.8	Α
ulsed Source Current		I _{SM}			23.2	Α
Forward On Voltage	$V_{GS} = 0V, I_{S} = 1A$	V _{SD}			1	V

Notes:

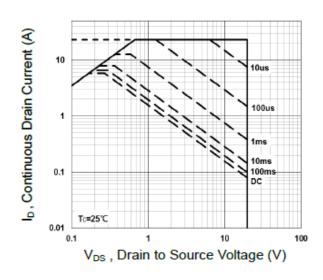
- 1. Current limited by package.
- 2. Pulse width limited by the maximum junction temperature.
- 3. Pulse test: PW \leq 300 μ s, duty cycle \leq 2%.
- 4. For DESIGN AID ONLY, not subject to production testing.
- 5. Switching time is essentially independent of operating temperature.

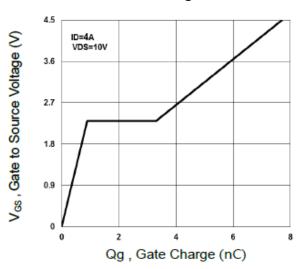
ORDERING INFORMATION

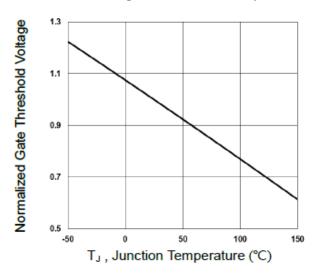

PART NO.	PACKAGE	PACKING		
TSM250N02DCQ RFG	TDFN 2x2	3,000pcs / 7" Reel		

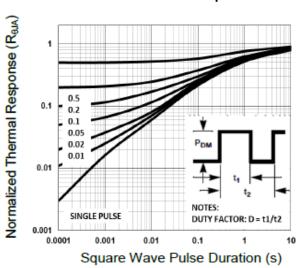

CHARACTERISTICS CURVES

(T_C = 25°C unless otherwise noted)


Continuous Drain Current vs. Tc

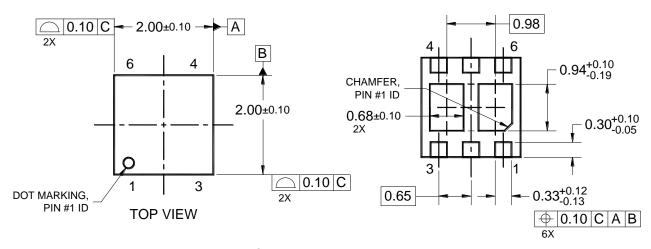

On-Resistance vs. Junction Temperature

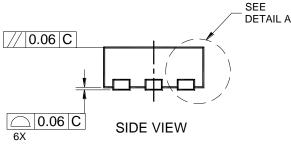

Maximum Safe Operating Area

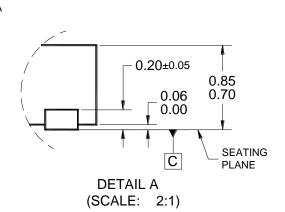

Gate Charge

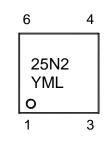
Threshold Voltage vs. Junction Temperature

Normalized Thermal Transient Impedance Curve

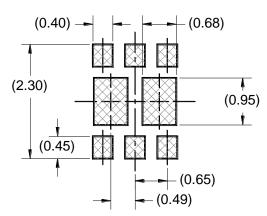

Version: C2212


3




PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

TDFN2x2


MARKING DIAGRAM (TOP VIEW)

P/N = DEVICE CODE

Y = YEAR CODE

M = MONTH CODE FOR HALOGEN FREE PRODUCT

L = LOT CODE (1~9, A~Z)

SUGGESTED PAD LAYOUT

NOTES: UNLESS OTHERWISE SPECIFIED

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS.
- SEATING PLANE IS DEFINED BY TERMINAL BOTTOM SURFACE ONLY.
- 4. DWG NO. REF: HQ2SD07-TDFN2X2D-003 REV A

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.