TSL9A12 Series Taiwan Semiconductor

200mA, 6V, Nanopower Ig 600nA, Low-Dropout Linear Regulator with Enable

DESCRIPTION

The TSL9A12 series are ultra-low quiescent current regulator features low dropout voltage and low current in the standby mode. With 600nA quiescent current at no load. The TSL9A12 series is ideally suited for standby micro-control-unit systems, especially for always-on applications like portable, and other batteryoperated systems. The TSL9A12 series retains all the features that are common to low dropout regulators including a low dropout PMOS pass device, short circuit protection, and thermal shutdown.

FEATURES

- Input voltage up to 6V
- Fixed output voltages 1.8V and 3.3V •
- Ultra-low quiescent current 600nA (typ.) •
- Output voltage accuracy ±2% •
- Dropout voltage 400mV @ Io: 200mA (Vout=3.3V) •
- Stable with ceramic capacitors ٠
- Current limit protection
- Over temperature protection
- ٠ **RoHS** Compliant
- Halogen-Free

APPLICATION

- Portable, Battery powered equipment
- Low power microcontrollers
- Wireless communication equipment

Pin Definition:

Pin Definition: 1. Input 2. Ground 3. Enable 4. NC 5. Output

1. Ground 2. Output Input

Notes: MSL 1 (Moisture Sensitivity Level) per J-STD-020

TYPICAL APPLICATION CIRCUIT

1

TSL9A12 Series

Taiwan Semiconductor

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise noted)					
PARAMETER	SYMBOL	LIMIT	UNIT		
Input voltage (V _{IN} to GND)	Vin	-0.3 ~ 6	V		
Recommended operating conditions	Vin	~ 6	V		
Junction temperature range	TJ	-40 ~ +125	°C		
Operating temperature ambient range	TA	-40 ~ +105	°C		
Storage temperature range	T _{STG}	-55 ~ +150	°C		
500	HBM	2	kV		
ESD	CDM	1	kV		

Notes: Stress above the listed absolute rating may cause permanent damage to the device.

DADAMETED	SYMDOL	וד			
PARAMETER	STMBOL	SOT-23	SOT-25	UNIT	
Thermal resistance junction to ambient	R _{θJA}	260	220	°C/W	
Thermal resistance junction to case	R _{ejc}	120	95	°C/W	

ELECTRICAL SPECIFICATIONS ($V_{IN} = V_{OUT} + 1V$, $I_O = 1$ mA, $T_A = 25$ °C unless otherwise noted)							
PARAMETER		CONDITIONS	SYMBOL	MIN	ТҮР	MAX	UNIT
Output voltage	V _{OUT} 1.8V	V _{IN} = V _{OUT} +1V, I _O = 1mA	Vout	1.764		1.836	V
	V _{OUT} 3.3V			3.234		3.366	
Line regulation		V _{IN} = V _{OUT} +1V ~ 5.5V,	ΔVout,li			2	%
Load regulation	Vout 1.8V	$1mA < I_{LOAD} \le 200mA$ $\Delta V_{OUT,IO}$	A) (2.5	
	Vout 3.3V				2	%	
Quiescent current		$V_{IN} = V_{EN}, Io = 0mA$	lq		0.6	1.2	μA
Current limit			lc∟	350			mA
Dropout voltage		lo = 100mA	- Vdropout		215	304	mV
	Vout = 1.8V	lo = 150mA			320	456	
		lo = 200mA			425	607	
		lo = 100mA			160	280	mV
	Vout = 3.3V	lo = 150mA			300	430	
		lo = 200mA			400	575	
Enable threshold voltage		Enable high	V _{EN_HI}	1			V
		Enable low	Ven_lo			0.2	
Thermal shutdown			T _{SD}		150		°C
Power supply reject	tion ratio	lo = 5mA, f = 100Hz	PSRR		60		dB

Note:

Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress
ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections
of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain
possibility to affect device reliability.

2. Devices are ESD sensitive. Handing precaution recommended.

3. The device is not guaranteed to function outside its operating conditions.

BLOCK DIAGRAM

ORDERING INFORMATION

OUTPUT VOLTAGE	ORDERING CODE	PACKAGE	PACKING
1.8V	TSL9A12V18CX RFG	SOT-23	3,000pcs / 7" Reel
3.3V	TSL9A12V33CX RFG	SOT-23	3,000pcs / 7" Reel
1.8V	TSL9A12V18CX5 RFG	SOT-25	3,000pcs / 7" Reel
3.3V	TSL9A12V33CX5 RFG	SOT-25	3,000pcs / 7" Reel

APPLICATION INFORMATION

Input-Output capacitor requirements

The external input and output capacitors of TSL9A12 series must be properly selected for stability and performance. Use a 1µF or larger input capacitor and place it close to the IC's V_{IN} and GND pins. Any output capacitor meeting the minimum 1m Ω ESR (Equivalent Series Resistance) and effective capacitance between 1µF and 22µF requirement may be used. Place the output capacitor close to the IC's V_{OUT} and GND pins. Increasing capacitance and decreasing ESR can improve the circuit's PSRR and line transient response.

Dropout voltage

The TSL9A12 series use a PMOS pass transistor to achieve low dropout. When $(V_{IN} - V_{OUT})$ is less than the dropout voltage (V_{DROP}) , the PMOS pass device is in the linear region of operation and the input-to-output resistance is the $R_{DS(ON)}$ of the PMOS pass element. V_{DROP} scales approximately with the output current because the PMOS device behaves as a resistor in dropout condition. As any linear regulator, PSRR and transient response are degraded as $(V_{IN} - V_{OUT})$ approaches dropout condition.

Over Temperature Protection

The over temperature protection function of TSL9A12 series will turn off the P-MOSFET when the junction temperature exceeds 150°C (typ.). Once the junction temperature cools down by approximately 15°C, the regulator will automatically resume operation

Thermal Application

For continuous operation, do not exceed the absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated as below: $P_{D(MAX)} = (T_{J(MAX)}-T_A) / (R_{\theta JA})$ where $T_{J(MAX)}$ is the maximum allowable junction temperature, and T_A is the ambient temperature suitable in application. Power dissipation (P_D) is equal to the product of the output current and the voltage drop across the output pass element, as shown in the equation below: $P_D = (V_{IN} - V_{OUT}) \times I_{OUT}$.

TYPICAL PERFORMANCE CURVE

Figure 1. Dropout Voltage vs. Output Current

Figure 3. Dropout Voltage vs Input Voltage

Temperature

Figure 2. Dropout Voltage vs. Output Current

Figure 4. Dropout Voltage vs Input Voltage

Figure 6. Ground Current vs Load Current

Taiwan Semiconductor

TYPICAL PERFORMANCE CURVE (CONTINUED)

Figure 9. Enable Voltage vs Input Voltage

Figure 11. Output Voltage vs Output Current

Figure 8. Shutdown Current vs Ambient Temperature

Figure 10. Output Voltage vs Ambient Temperature

Figure 12. Output Voltage vs Output Current

TYPICAL PERFORMANCE CURVE (CONTINUED)

Figure 13. Start-up with VEN = VIN

Figure 15. IOUT Transient 0mA to 200mA

PACKAGE OUTLINE DIMENSIONS

PACKAGE OUTLINE DIMENSIONS

4 MOLDED PLASTIC BODY DIMENSIONS DO

5. DWG NO. REF: HQ2SD07-SOT25-026 REV A.

OR GATE BURRS.

SOT-25

O =JAN P =FEB Q=MAR S =MAY T =JUN U=JUL NOT INCLUDE MOLD FLASH, PROTRUSIONS W =SEP X =OCT Y=NOV

> L = LOT CODE

Device code: C Voltage code: D (1.8V), S (3.3V) R = APR

V = AUG

Z = DEC

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.