

Sensitivity Unipolar Hall Effect Switch

DESCRIPTION

TSH282 is an unipolar Hall effect sensor IC. It incorporates advanced chopper stabilization technology to provide accurate and stable magnetic switch points. The design, specifications and performance have been optimized for applications of solid-state switches. The output transistor will be switched on (BOP) in the presence of a sufficiently strong South pole magnetic field facing the marked side of the package. Similarly, the output will be switched off (BRP) in the presence of a weaker South field and remain off with "0" field.

FEATURES

- CMOS Hall IC technology
- Solid-State Reliability
- Chopper stabilized amplifier stage
- Unipolar, output switches with absolute value of South pole from magnet
- Operation down to 3.0V
- High sensitivity for direct reed switch replacement applications
- RoHS compliant
- Halogen-free

APPLICATION

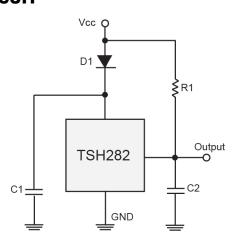
- Solid state switch
- Limit switch, Current limit
- Interrupter
- Current sensing
- Magnet proximity sensor for reed switch replacement

Pin Definition:

- 1. Vcc

2. Ground 3. Output

SOT-23



Pin Definition:

- 1. Vcc
- 2. Output
- 3. Ground

Notes: SOT-23 MSL 1 (Moisture Sensitivity Level) per J-STD-020

TYPICAL APPLICATION CIRCUIT

1

D1: 1N4148 or 100Ω

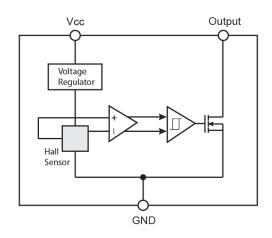
C1: 1000pF C2: 15pF $R1:10k\Omega$

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise noted)					
PARAMETER		SYMBOL	LIMIT	UNIT	
Supply voltage		Vcc	27	V	
Output Voltage		Vouт	27	V	
Reverse voltage		Vcc/оит	-0.3	V	
Magnetic flux density			Unlimited	Gauss	
Output current		Іоит	50	mA	
Operating Temperature Range		T _{OPR}	-40 to +85	∘C	
Storage temperature range		T _{STG}	-55 to +150	°C	
Maximum Junction Temp		TJ	150	°C	
Package Power Dissipation	TO-92S	P _D	606	m\//	
	SOT-23		230	mW	

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

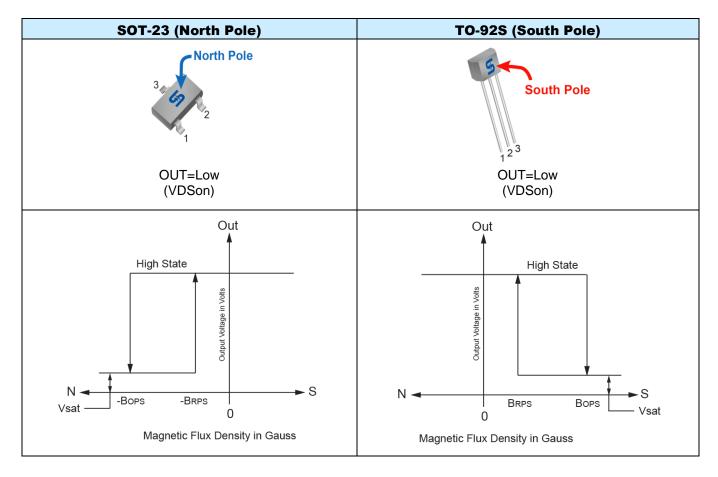
THERMAL PERFORMANCE					
PARAMETER		SYMBOL	LIMIT	UNIT	
Thermal Resistance - Junction to Case	TO-92S	Rejc	148	°C/W	
	SOT-23		410		
Thermal Resistance - Junction to Ambient	TO-92S	Reja	206	°C/W	
	SOT-23		543		

ELECTRICAL SPECIFICATIONS (DC Operating Parameters : T _A =25°C, V _{CC} =12V)					
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	Operating	3.0		24	V
Supply Current	B <b<sub>OP</b<sub>		2.5	5.0	mA
Output Low Voltage	IOUT = 20mA, B>BOP			500	mV
Output Leakage Current	I _{OFF} B <b<sub>RP, V_{OUT} = 20V</b<sub>			10	μA
Output Rise Time	$R_L = 1k\Omega$, $C_L = 20pF$		0.04		μs
Output Fall Time	$R_L = 1k\Omega$; $C_L = 20pF$		0.18		μs
Operate Point		45		100	G
Release Point		25		70	G
Hysteresis			20		G


Note: 1G (gauss) = 0.1mT (millitesla)

ORDERING INFORMATION

ORDERING CODE	PACKAGE	PACKING
TSH282CT B0G	TO-92S	1Kpcs / Bulk Bag
TSH282CT A3G	TO-92S	4Kpcs / Ammo box
TSH282CX RFG	SOT-23	3Kpcs / 7" Reel


BLOCK DIAGRAM

OUTPUT BEHAVIOR vs. MAGNETIC POLE

DC Operating Parameters: $T_A = -40$ to 125° C, $V_{CC} = 3V \sim 24V$

PARAMETER	TEST CONDITION	OUT (TO-92S)	OUT (SOT-23)
South pole	B>Bop [(100)~(45)]	Low	Open (Pull-up voltage)
Null or weak magnetic field	-Brp ~ +Brp	Open (Pull-up voltage)	Open (Pull-up voltage)
North pole	B< -Bop (-25~-70)	Open (Pull-up voltage)	Low

3

CHARACTERISTIC PERFORMANCE

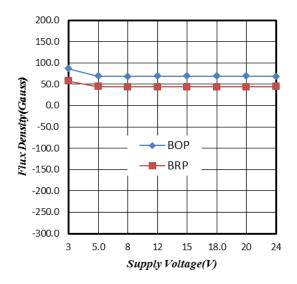


Figure 1. Supply Voltage vs. Flux Density

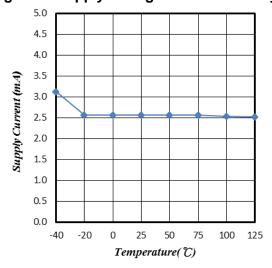


Figure 3. Supply Current vs. Temperature

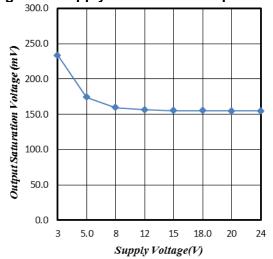


Figure 5. Output Saturation Voltage vs. Supply Voltage

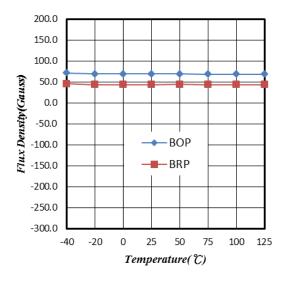


Figure 2. Temperature vs. Flux Density

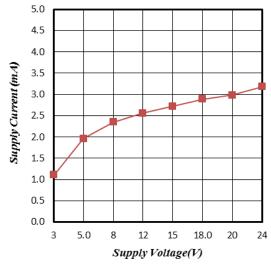


Figure 4. Supply Current vs. Supply Voltage

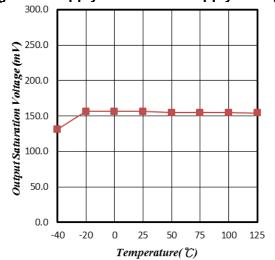
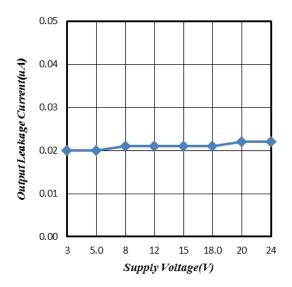
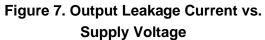




Figure 6. Output Saturation Voltage vs. Temperature

CHARACTERISTIC PERFORMANCE (CONTINUE)

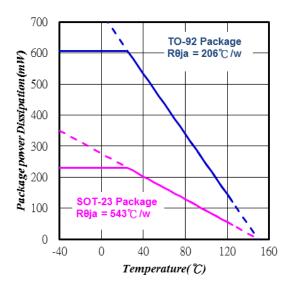
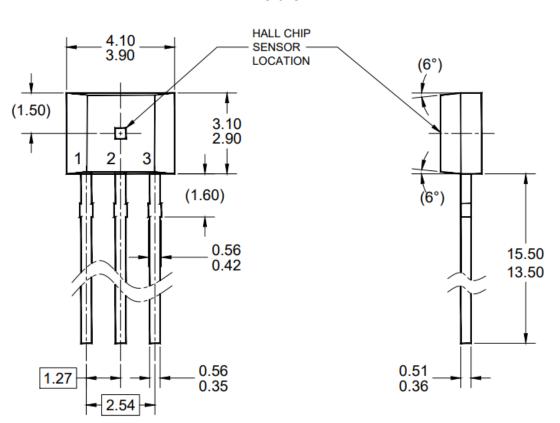
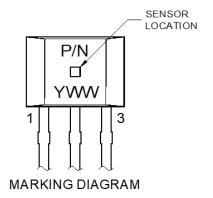
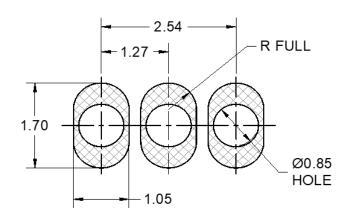


Figure 8. Power Dissipation vs. Temperature


Version: C2310


5

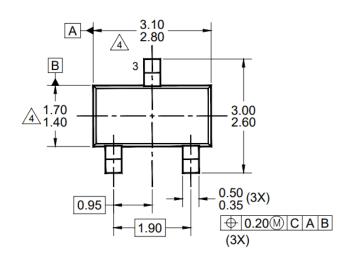
PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

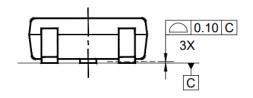

TO-92S

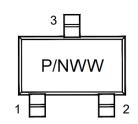
P/N = 282 **Y** = Year Code

WW = Week Code (01~52)

SUGGESTED PAD LAYOUT
(SCALE: 2X)

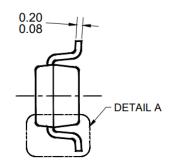

NOTES: UNLESS OTHERWISE SPECIFIED

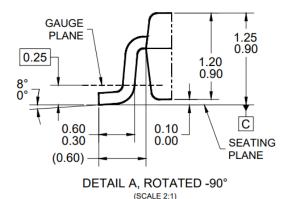

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DWG NO REF: HQ2SD07-TO92S-010 REV A.

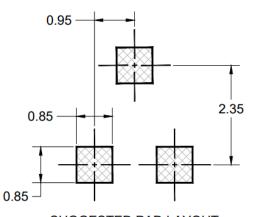


PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

SOT-23






MARKING DIAGRAM

P/N = 282

WW = Date Code

SUGGESTED PAD LAYOUT

NOTES: UNLESS OTHERWISE SPECIFIED

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. PACKAGE OUTLINE REFERENCE: EIAJ ED-7500A, SC-59.
- MOLDED PLASTIC BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 5. DWG NO. REF: HQ2SD07-SOT23IC-104 REV A.

Version: C2310

7

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.