

General Purpose Hall Effect Latch

DESCRIPTION

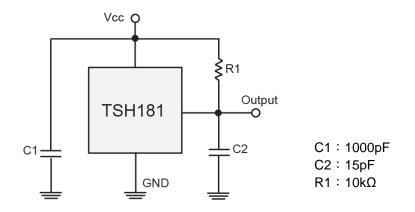
TSH181 Hall-Effect sensor is designed for electronic commutation of brush-less DC motor applications. The device includes an on-chip Hall voltage generator for magnetic sensing, a comparator that amplifies the Hall Voltage, and a Schmitt trigger to provide switching hysteresis for noise rejection, and open collector output. An internal band gap regulator is used to provide temperature compensated supply voltage for internal circuits and allows a wide operating supply range. The device is identical except for magnetic switch points. The device includes on a single silicon chip a voltage regulator, Hall-voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-collector output to sink up to 25mA. A south pole of sufficient strength will turn the output on. The North Pole is necessary to turn the output off. An on-board regulator permits operation with supply voltages of 3.5V to 20V

FEATURES

- Temperature compensation.
- Wide operating voltage range.
- Open-Collector pre-driver.
- Reverse bias protection on power supply pin.
- 100% at 125°C "Hot Test"
- RoHS Compliant
- Halogen-free according to IEC 61249-2-21

APPLICATION

- High temperature Fan motor
- 3 phase BLDC motor application
- Fan motor application
- Speed sensing
- Revolution counting



Pin Definition: 1. Vcc

2. Ground 3. Output

TYPICAL APPLICATION CIRCUIT

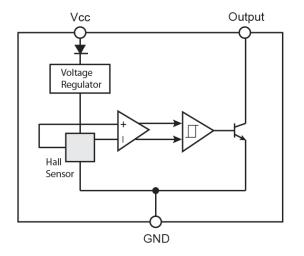
Taiwan Semiconductor

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise noted)			
PARAMETER	SYMBOL	LIMIT	UNIT
Supply voltage	Vcc	20	V
Output Voltage	Vout	30	V
Reverse voltage	Vcc/out	-20	V
Magnetic flux density		Unlimited	Gauss
Output current	Іоит	25	mA
Operating Temperature Range	Topr	-40 to +125	°C
Storage temperature range	T _{STG}	-55 to +150	°C
Supply voltage	TJ	150	°C
Package Power Dissipation	PD	606	mW

Note: Do not apply reverse voltage to V_{CC} and V_{OUT} Pin, It may be caused for Miss function or damaged device

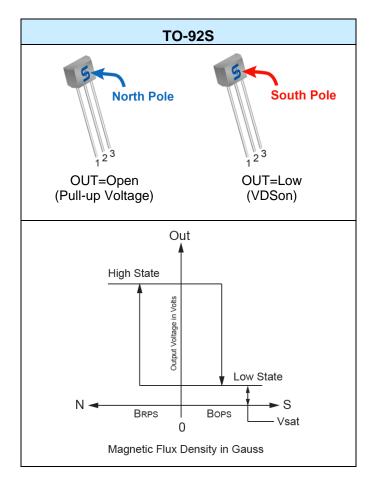
THERMAL PERFORMANCE			
PARAMETER	SYMBOL	LIMIT	UNIT
Thermal Resistance - Junction to Case	Rejc	148	°C/W
Thermal Resistance - Junction to Ambient	Reja	206	°C/W

ELECTRICAL SPECIFICATIONS (DC Operating Parameters : T _A =25°C, V _{CC} =12V)					
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNIT
Supply Voltage	Operating	3.5		20	V
Supply Current	B< BOP		4	8	mA
Output Saturation Voltage	IOUT = 10mA, B>BOP			700	mV
Output Leakage Current	IOFF B <brp, vout="<math">12V</brp,>			10	μA
Output Rise Time	$R_L = 820\Omega, C_L = 20pF$			1.5	μs
Output Fall Time	$R_L = 820\Omega; C_L = 20pF$			1.5	μs
Operate Point		5		90	Gauss
Release Point		-90		-5	Gauss
Hysteresis			100		Gauss


Note: 1G (gauss) = 0.1mT (millitesla)

ORDERING INFORMATION

ORDERING CODE	PACKAGE	PACKING
TSH181CT B0G	TO-92S	1Kpcs / Bulk Bag


BLOCK DIAGRAM

OUTPUT BEHAVIOR vs. MAGNETIC POLE

DC Operating Parameters: $T_A = -40$ to $125^{\circ}C$, $V_{CC} = 3.5V \sim 20V$

PARAMETER	TEST CONDITION	OUT
North pole	B>B _{OP}	Open
South pole	B <b<sub>RP</b<sub>	Low

CHARACTERISTIC PERFORMANCE

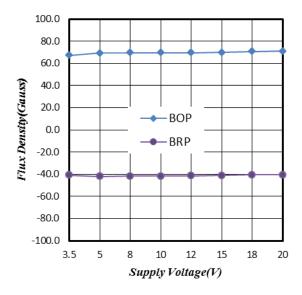
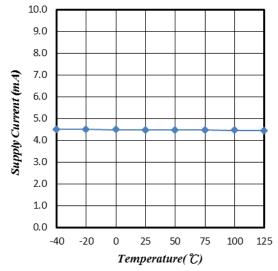



Figure 1. Supply Voltage vs. Flux Density

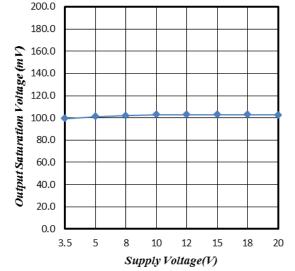


Figure 5. Supply Voltage vs. Leakage Current

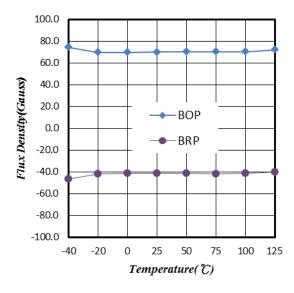


Figure 2. Temperature vs. Flux Density

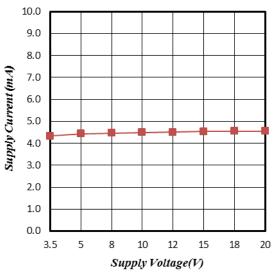


Figure 4. Temperature vs. Output Voltage

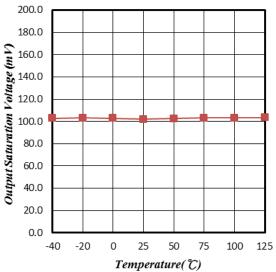
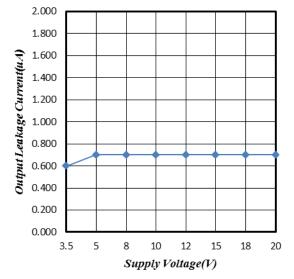



Figure 6. Power Dissipation vs. Temperature

CHARACTERISTIC PERFORMANCE (CONTINUE)

Figure 7. Temperature vs. Supply Current

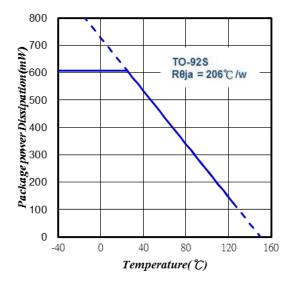
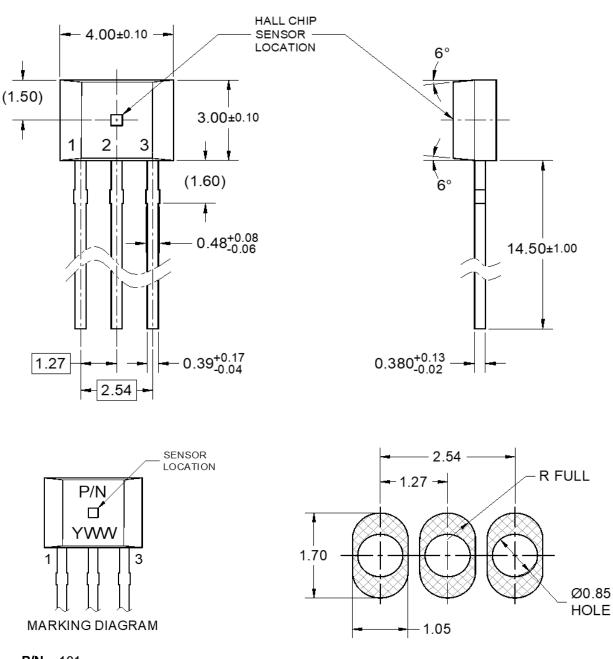



Figure 8. Temperature vs. Power Dissipation

PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

TO-92S

P/N = 181 **Y** = Year Code **WW** = Week Code (01~52)

NOTES: UNLESS OTHERWISE SPECIFIED

SUGGESTED PAD LAYOUT

(SCALE: 2X)

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DWG NO REF: HQ2SD07-TO92S-010 REV A.

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.