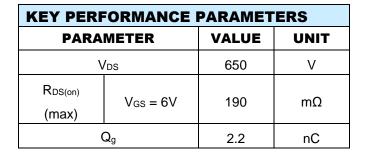


Taiwan Semiconductor

FEATURES

FAIWAN


• 650 V enhancement mode power transistor

IICONDUCTOR

- Bottom-cooled, small 5x6 mm PDFN package
- RDS(on)(Typ) = 150 mΩ
- IDS(max) = 11 A
- Ultra-low FOM
- Simple gate drive requirements (0 V to 6 V)
- Transient tolerant gate drive (-20 V / +10 V)
- High switching frequency (> 1 MHz)
- Fast and controllable fall and rise times
- Reverse conduction capability
- Zero reverse recovery loss
- Source Sense (SS) pin for optimized gate drive
- ROHS Compliant
- Halogen-free according to IEC 61249-2-21

APPLICATIONS

- Power Adapters
- LED Lighting Drivers
- Fast Battery Charging
- Power Factor Correction
- Appliance Motor Drives
- Wireless Power Transfer
- Industrial Power Supplies

PDFN56

Gate Pin 4 Source Sense Pin 3 Source Pin 6

ABSOLUTE MAXIMUM RATINGS (Tcase = 25 °C except as noted)						
PARAMETER	SYMBOL	LIMIT	UNIT			
Drain-Source Voltage	V _{DS}	650	V			
Drain-to-Source Voltage – transient (Note 1)	VDS(transient)	850	V			
Gate-Source Voltage	V _{GS}	-10 to +7	V			
Gate-to-Source Voltage - transient (Note 1)	VGS(transient)	-20 to +10	V			
Continuous Drain Current $T_c = 25^{\circ}C$		11				
Continuous Drain Current Tc = 100°	C I _{DS}	7.2	А			
Pulse Drain Current (Pulse width 10 µs, Vos = 6 V) (Note	e 2) IDS Pulse	19				
Operating Junction Temperature	TJ	-55 to +150	°C			
Storage Temperature Range	Ts	-55 to +150	°C			

Notes:

1. For ≤1 μs

2. Defined by product design and characterization. Value is not tested to full current in production.

THERMAL PERFORMANCE					
PARAMETER	SYMBOL	LIMIT	UNIT		
Junction to Case Thermal Resistance	Rejc	1.4	°C/W		
Junction to Ambient Thermal Resistance(Note 3)	R _{ØJA}	36.5	°C/W		

Notes:

3. Device mounted on 1.6 mm PCB thickness FR4, 4-layer PCB with 2 oz. copper on each layer. The recommendation for thermal vias under the thermal pad is 0.3 mm diameter (12 mil) with 0.635 mm pitch (25 mil). The copper layers under the thermal pad and drain pad are 25 x 25 mm² each. The PCB is mounted in horizontal position without air stream cooling

Electrical Characteristics (Ty PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNIT
Drain-to-Source Blocking Voltage	Vgs = 0 V, Ibss ≤ 18 µA	V(BL)DSS	650			V
Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 2.4 \text{mA}$	V _{GS(TH)}	1.1	1.7	2.6	V
Gate-to-Source Current	$V_{GS} = 6 V, V_{DS} = 0 V$	lgs		57		μA
Drain-Source Leakage Current	Vps = 650 V, Vgs = 0 V Tj = 25 °C	IDSS		0.7	18	
	Vbs = 650 V, Vgs = 0 V TJ = 150 °C			143		μA
	Vgs = 6 V, TJ = 25 °C Ids = 3.2 A	R _{DS(on)}		150	190	
Drain-Source On-State Resistance	Vgs = 6 V, TJ = 150 °C Ids = 3.2 A			380		mΩ
Total Gate Charge	Vgs = 0 to 6 V Vps = 400 V	Qg		2.2		
Gate-Source Charge		Qgs		0.7		
Gate-Drain Charge		Qgd		0.7		nC
Output Charge	Vgs = 0 V, Vds = 400 V	Qoss		19		
Gate Plateau Voltage	VDS = 400 V,IDS = 11 A	Vplat		3.5		V
Input Capacitance	Vps = 400 V	Ciss		70		
Output Capacitance	Vgs = 0 V	Coss		20		
Reverse Transfer Capacitance	f = 100 kHz	Crss		0.4		
Effective Output Capacitance Energy Related (Note 4)	Vgs = 0 V	Co(er)		30		pF
Effective Output Capacitance Time Related (Note 5)	Vbs = 0 to 400 V		47			
Internal Gate Resistance	f = 5 MHz	Rg		1.4		Ω
Reverse Recovery Charge		Qrr		0		nC

Notes:

4. C_{O(ER)} is the fixed capacitance that would give the same stored energy as Coss while V_{DS} is rising from 0 V to the stated V_{DS}.

5. Co(TR) is the fixed capacitance that would give the same charging time as Coss while VDs is rising from 0 V to the stated VDs.

TSG65N190CR

Taiwan Semiconductor

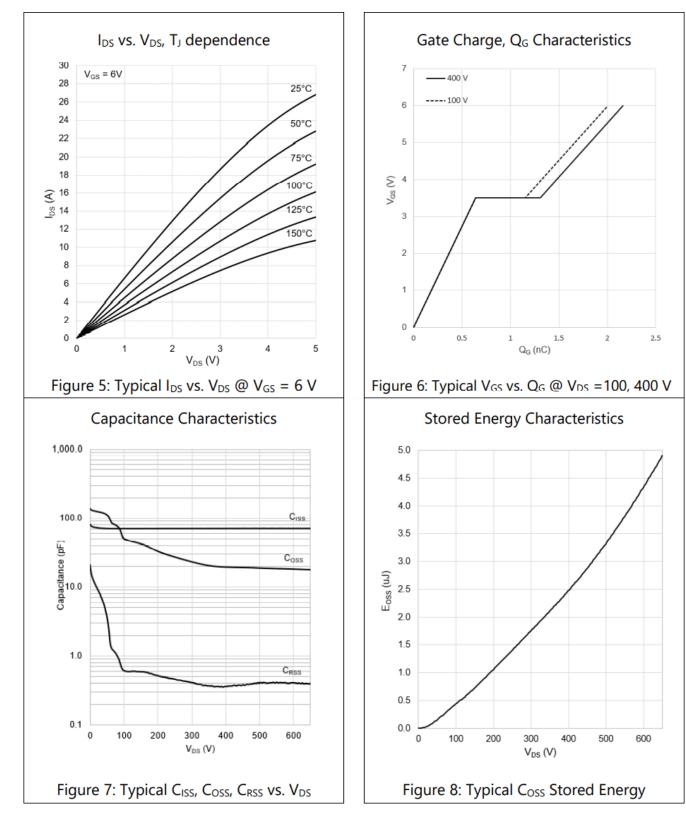
Electrical Characteristics cont'd (Typical values at $T_J = 25$ °C, $V_{GS} = 6$ V unless otherwise noted)						
PARAMETER	CONDITIONS	SYMBOL	MIN	ТҮР	МАХ	UNIT
Turn-On Delay	Vdd = 400 V,	t _{D(on)}		5		
Rise Time	Vgs = 0-6 V,	t _R		5		
Turn-Off Delay	IDS = 6 A,	t _{D(off)}		8		nS
Turn-Off Fall Time	$R_{G(on)} = 15 \Omega,$ - R_G(off) = 2 Ω ,	tF		10		
Switching Energy during turn-on	$L = 300 \ \mu H, L_P = 9 \ nH$	Eon		20		
Switching Energy during turn-off	(Notes 6 , 7, 8)	Eoff		5.8		μJ
Output Capacitance Stored	VDS = 400 V	Eoss		2.4		μυ
Energy	Vgs = 0 V, f = 100 kHz	Eoss		2.4		

Notes:

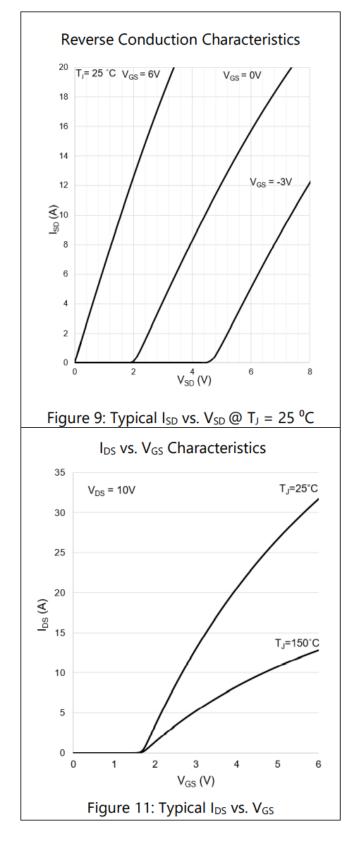
- 6. See Figure 16 for switching test circuit diagram.
- 7. See Figure 17 for switching time definition waveforms.
- 8. LP = parasitic inductance

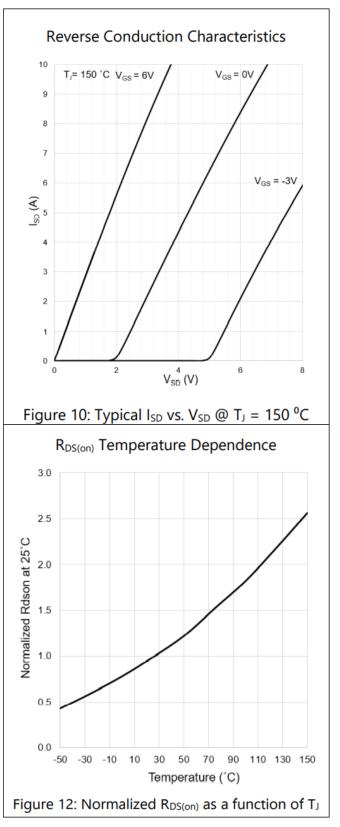
ORDERING INFORMATION

ORDERING CODE	PACKAGE	PACKING
TSG65N190CR RVG	PDFN56	3000pcs / 13" Reel

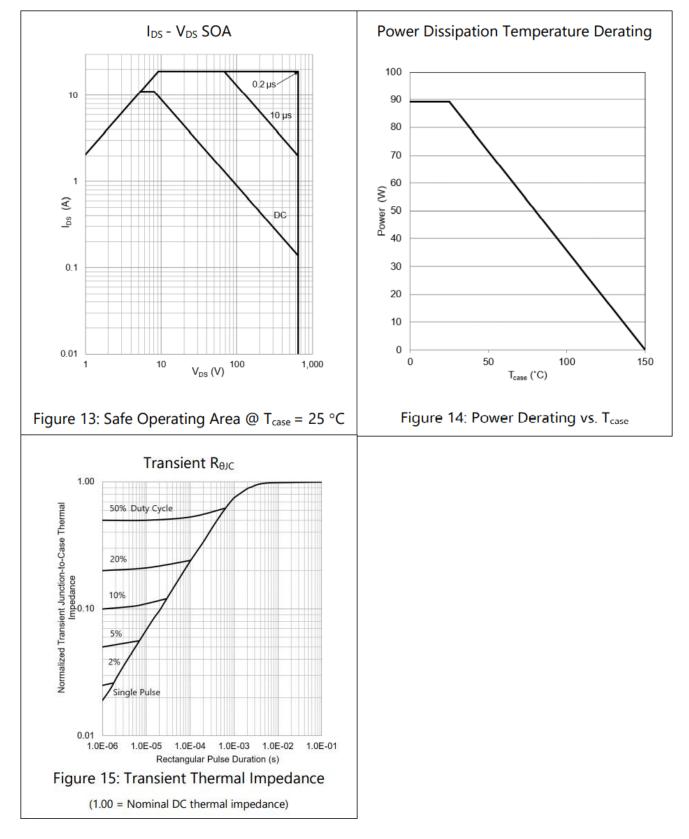


Electrical Performance Graphs



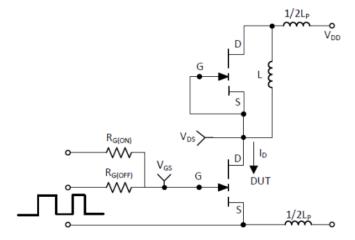
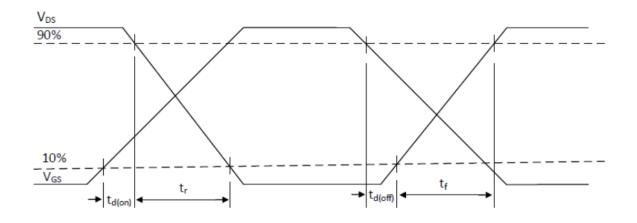

Electrical Performance Graphs

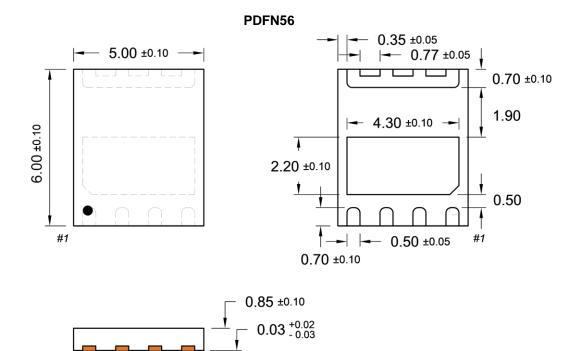
Electrical Performance Graphs

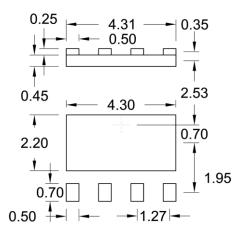


Thermal Performance Graphs

Test Circuits


Figure 16: Switching Test Circuit



TAIWAN

ICONDUCTOR

Recommended PCB Footprint

MARKING DIAGRAM

52)
-Z)

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.