FEATURES

- 650 V enhancement mode power transistor
- Bottom-cooled, 8x8 mm PDFN package
- $\operatorname{RDS}(o n)(T y p)=50 \mathrm{~m} \Omega$
- IDS(max) $=30 \mathrm{~A}$
- Simple gate drive requirements (0 V to 6 V)
- Transient tolerant gate drive (-20 V / +10 V)
- High switching frequency (> 1 MHz)
- Fast and controllable fall and rise times
- Reverse conduction capability
- Zero reverse recovery loss
- Source Sense (SS) pin for optimized gate drive
- ROHS Compliant
- Halogen-free

APPLICATIONS

- Bridgeless Totem Pole PFC
- Consumer, Industrial and Datacenter High Density Power Supply
- High Power Adapters
- LED Lighting Drivers
- Solar Inverter
- Uninterruptable Power Supplies
- Appliance and Industrial Motor Drives
- Laser Drivers
- Wireless Power Transfer

KEY PERFORMANCE PARAMETERS

PARAMETER		VALUE	UNIT
V_{DS}		650	V
$R_{\mathrm{DS}(0 n)}$ (\max)	$\mathrm{V}_{\mathrm{GS}}=6 \mathrm{~V}$	68	$\mathrm{~m} \Omega$
Q_{g}		6.7	nC

Drain
Pin 5,6,7,8

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)			
PARAMETER	SYMBOL	LIMIT	UNIT
Drain-Source Voltage	VDS	650	V
Drain-to-Source Voltage - transient (Note 1)	VDS(transient)	850	V
Gate-Source Voltage	VGS	-10 to +7	V
Gate-to-Source Voltage - transient (Note 1)	VGS(transient)	-20 to +10	V
Continuous Drain Current $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	lds	30	A
Continuous Drain Current $\mathrm{T}_{\mathrm{C}=100^{\circ} \mathrm{C}}$		20	
Pulse Drain Current (Pulse width $10 \mu \mathrm{~s}$, VGs = 6 V) (Note 2)	IDS Pulse	60	
Operating Junction Temperature	TJ	-55 to +150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Ts	-55 to +150	${ }^{\circ} \mathrm{C}$

Notes:

1. For $\leq 100 \mu \mathrm{~s}$.
2. Defined by product design and characterization.

TSG65N068CE
SEMICONDUCTOR

THERMAL PERFORMANCE

PARAMETER	SYMBOL	LIMIT	UNIT
Junction to Case Thermal Resistance	Reコc	0.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient Thermal Resistance(Note 3)	ReコA	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes:

3. Device mounted on 1.6 mm PCB thickness FR4, 4-layer PCB with 2 oz. copper on each layer. The recommendation for thermal vias under the thermal pad is 0.3 mm diameter (12 mil) with 0.635 mm pitch (25 mil). The copper layers under the thermal pad and drain pad are $25 \times 25 \mathrm{~mm} 2$ each. The PCB is mounted in horizontal position without air stream cooling

Electrical Characteristics (Typical values at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{VGS}_{\mathrm{GS}}=6 \mathrm{~V}$ unless otherwise noted)

PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNIT
Drain-to-Source Blocking Voltage	VGS $=0 \mathrm{~V}$, loss $\leq 58 \mu \mathrm{~A}$	V(BL)DSS	650	--	--	V
Gate Threshold Voltage	$V_{G S}=V_{\text {DS }}, I_{D}=7.5 \mathrm{~mA}$	$\mathrm{V}_{\text {GS (th) }}$	1.1	1.7	2.6	V
Gate-to-Source Current	$\mathrm{V}_{\mathrm{GS}}=6 \mathrm{~V}, \mathrm{VDS}=0 \mathrm{~V}$	las	--	182	--	$\mu \mathrm{A}$
Drain-Source Leakage Current	$\begin{aligned} & \text { VDS }=650 \mathrm{~V}, \mathrm{VGS}=0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$	loss	--	2	58	$\mu \mathrm{A}$
	$\begin{aligned} & \text { VDS }=650 \mathrm{~V}, \mathrm{VGS}=0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \end{aligned}$		--	70	--	
Drain-Source On-State Resistance	$\begin{aligned} & \text { VGS }=6 \mathrm{~V}, \mathrm{TJ}=25^{\circ} \mathrm{C} \\ & \mathrm{IDS}=5.5 \mathrm{~A} \\ & \hline \end{aligned}$	Ros(on)	--	50	68	$\mathrm{m} \Omega$
	$\begin{aligned} & \mathrm{VGS}=6 \mathrm{~V}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C} \\ & \mathrm{ldS}=5.5 \mathrm{~A} \end{aligned}$		--	127	--	
Total Gate Charge	$\begin{aligned} & \mathrm{VGS}=0 \text { to } 6 \mathrm{~V} \\ & \mathrm{VDS}=400 \mathrm{~V} \end{aligned}$	Qg	--	6.7	--	nC
Gate-Source Charge		Qgs	--	1.9	--	
Gate-Drain Charge		Qgd	--	2	--	
Output Charge	$\mathrm{VGS}=0 \mathrm{~V}, \mathrm{~V}$ DS $=400 \mathrm{~V}$	Qoss	--	61	--	
Gate Plateau Voltage	$\mathrm{Vds}=400 \mathrm{~V}$, lds $=30 \mathrm{~A}$	Vplat	--	3.5	--	V
Internal Gate Resistance	$\mathrm{f}=5 \mathrm{MHz}$, open drain	RG		1.3		Ω
Input Capacitance	$\begin{aligned} & \mathrm{VDS}=400 \mathrm{~V} \\ & \mathrm{VGS}=0 \mathrm{~V} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	Ciss	--	235	--	pF
Output Capacitance		Coss	--	60	--	
Reverse Transfer Capacitance		Crss	--	0.6	--	
Effective Output Capacitance Energy Related (Note 4)	$\begin{aligned} & \mathrm{VGS}=0 \mathrm{~V} \\ & \mathrm{VDS}=0 \text { to } 400 \mathrm{~V} \end{aligned}$	Co(ER)	--	96	--	
Effective Output Capacitance Time Related (Note 5)		Co(tr)	--	150	--	
Reverse Recovery Charge		Qrr	--	0	--	nC

Notes:

4. $\mathrm{Co}_{\mathrm{O}(\mathrm{ER})}$ is the fixed capacitance that would give the same stored energy as Coss while VDs is rising from 0 V to the stated Vos.
5. $\mathrm{Co}_{\text {(TR) }}$ is the fixed capacitance that would give the same charging time as Coss while V_{DS} is rising from 0 V to the stated Vos.

Electrical Characteristics cont'd (Typical values at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, VGS $=6 \mathrm{~V}$ unless otherwise noted)

PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNIT
Turn-On Delay	$\begin{aligned} & \hline \mathrm{VDD}=400 \mathrm{~V}, \\ & \mathrm{VGS}=+6 /-3 \mathrm{~V}, \\ & \mathrm{IDS}=15 \mathrm{~A}, \\ & \mathrm{RG}(\text { (on })=15 \Omega, \\ & \mathrm{RG}_{\text {(off })}=2 \Omega, \\ & \mathrm{~L}=90 \mu \mathrm{H}, \mathrm{LP}=12 \mathrm{nH} \\ & (\text { Notes } 6,7,8) \\ & \hline \end{aligned}$	tD(on)	--	8.2	--	nS
Rise Time		tR	--	6.3	--	
Turn-Off Delay		$\mathrm{t}_{\mathrm{p} \text { (oft) }}$	--	10.8	--	
Turn-Off Fall Time		tF	--	5.7	--	
Switching Energy during turn-on		Eon	--	50	--	$\mu \mathrm{J}$
Switching Energy during turn-off		Eoff	--	10	--	
Output Capacitance Stored Energy	$\begin{aligned} & \mathrm{V} \text { VS }=400 \mathrm{~V} \\ & \mathrm{VGS}=0 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	Eoss	--	8	--	

Notes:

6. See Figure 16 for switching test circuit diagram.
7. See Figure 17 for switching time definition waveforms.
8. $\mathrm{LP}=$ parasitic inductance

ORDERING INFORMATION

ORDERING CODE	PACKAGE	PACKING
TSG65N068CE RVG	PDFN88	$3,000 \mathrm{pcs} / 13^{\prime \prime}$ Reel

Electrical Performance Graphs

Figure 1: Typical $I_{D S}$ vs. $V_{D S} @ T_{J}=25^{\circ} \mathrm{C}$

Figure 3: RDS(on) vs. IDS at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Figure 2: Typical I_{DS} vs. $\mathrm{V}_{\mathrm{DS}} @ \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$
RDS(on) vs. IDS Characteristics

Figure 4: RDS(on) vs. IDS at $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$

Electrical Performance Graphs

Figure 5: Typical los vs. VDS @ VGS = 6 V

Figure 7: Typical CISS, Coss, CRSS vs. VDS

Figure 6: Typical VGs vs. Q_{g} @ Vds $=100,400 \mathrm{~V}$
Stored Energy Characteristics

Figure 8: Typical Coss Stored Energy

Electrical Performance Graphs

Figure 9: Typical ISD vs. $V_{\text {SD }}$ @ $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ IDS Vs. VGS Characteristics

Figure 11: Typical IDS vs. VGs

Figure 10: Typical ISD vs. $V_{\text {SD }} @ T_{J}=150^{\circ} \mathrm{C}$ $\mathrm{R}_{\mathrm{DS}(\text { (on) }}$ Temperature Dependence

Figure 12: Normalized Rds(on) as a function of T_{J}

Thermal Performance Graphs

Figure 13: Safe Operating Area

Figure 15: Transient Thermal Impedance (1.00 $=$ Nominal DC thermal impedance $)$ _

Figure 14: Derating vs. Case Temperature

Test Circuits

Figure 16: Switching Test Circuit

PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

Recommended PCB Footprint

MARKING DIAGRAM

$$
\begin{array}{ll}
\mathbf{Y} & =\text { Year Code } \\
\mathbf{W W} & =\text { Week Code }(01 \sim 52) \\
\mathbf{L} & =\text { Lot Code }(1 \sim 9, \mathrm{~A} \sim \mathrm{Z}) \\
\mathbf{F} & =\text { Factory Code }
\end{array}
$$

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.

