

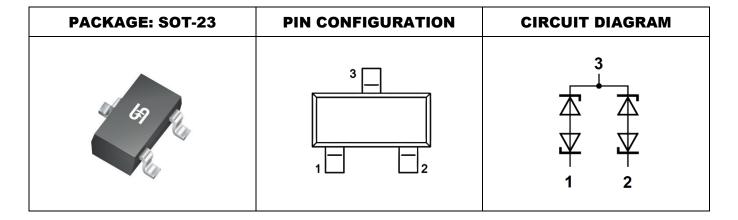
# **Bi-directional ESD Protection Diode**

### **DESCRIPTIONS**

The TESDA24VB30P2CX is Bidirectional ESD rated clamping cell to protect power interfaces, or control line, or low speed data line in an electronic system. It has been specifically designed to protect sensitive electronic components which are connected to power and control lines from over-voltage damage by Electrostatic Discharging (ESD), and Lightning.

ESD protection device in a small SOT-23 Surface-Mounted Device (SMD) plastic package designed to protect two automotive In-vehicle network bus lines from the damage caused by Electrostatics discharge (ESD) and other transients.

The TESDA24VB30P2CX may be used to provide ESD protection up to ±30kV(contact and air discharge) according to IEC61000-4-2, and withstand peak pulse current up to 5A (8/20µs) according to IEC61000-4-5.


#### **FEATURES**

- AEC-Q101 qualified
- ESD protect for 2 line with bidirectional.
- Provide ESD protection for each channel to IEC61000-4-2 (ESD) ±30kV (air), ±30kV (contact) IEC61000-4-4 (EFT) 4kV (5/50ns) IEC61000-4-5 (Lightning) 5A (8/20µs)
- Suitable for 24V and below, operating voltage applications
- Protect I/O line or power line.
- Moisture sensitivity level: level 1, per J-STD-020
- RoHS Compliant
- Halogen-Free

### **APPLICATION**

- ESD protection for In-vehicle network lines in automotive environments
- CAN Bus
- General Purpose I/O
- Portable Instrumentation
- Mobile & Handhelds





Taiwan Semiconductor

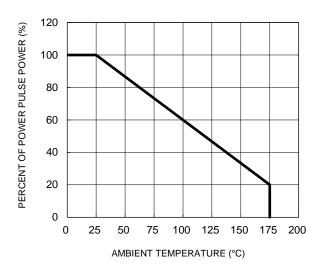
| ABSOLUTE MAXIMUM RATINGS (T <sub>A</sub> = 25°C unless otherwise noted) |                  |             |      |  |  |  |  |
|-------------------------------------------------------------------------|------------------|-------------|------|--|--|--|--|
| PARAMETER                                                               | SYMBOL           | VALUE       | UNIT |  |  |  |  |
| Peak pulse power (tp = 8/20us)                                          | РРК              | 210         | W    |  |  |  |  |
| Peak pulse current (tp = 8/20us)                                        | I <sub>PP</sub>  | 5           | А    |  |  |  |  |
| ESD according to IEC61000-4-2 air discharge                             | Vesd             | ±30         | kV   |  |  |  |  |
| ESD according to IEC61000-4-2 contact discharge                         | VESD             | ±30         | kV   |  |  |  |  |
| Junction temperature range                                              | TJ               | -55 to +175 | °C   |  |  |  |  |
| Storage temperature range                                               | T <sub>STG</sub> | -55 to +175 | °C   |  |  |  |  |

| ELECTRICAL SPECIFICATIONS (T <sub>A</sub> = 25°C unless otherwise noted) |                                             |                  |      |      |      |      |  |
|--------------------------------------------------------------------------|---------------------------------------------|------------------|------|------|------|------|--|
| PARAMETER                                                                | CONDITIONS                                  | SYMBOL           | MIN  | TYP  | MAX  | UNIT |  |
| Reverse working voltage                                                  |                                             | V <sub>RWM</sub> | -    | -    | 24   | V    |  |
| Reverse breakdown voltage                                                | I <sub>R</sub> = 1mA, T <sub>J</sub> = 25°C | V <sub>BR</sub>  | 24.7 | -    | 32.9 | V    |  |
| Reverse leakage current                                                  | V <sub>RWM</sub> = 24V                      | I <sub>R</sub>   | -    | -    | 100  | nA   |  |
| Clamping voltage <sup>(1)</sup>                                          | $I_{PP} = 1A$ , $tp = 8/20us$               | Vc               | -    | -    | 34   | V    |  |
|                                                                          | $I_{PP} = 5A$ , $tp = 8/20us$               |                  | -    | -    | 42   | V    |  |
| Clamping voltage <sup>(2)</sup>                                          | I <sub>TLP</sub> = 4A, tp = 100ns           | VcL              | -    | 33.7 | -    | V    |  |
|                                                                          | I <sub>TLP</sub> = 16A, tp = 100ns          |                  | -    | 38.3 | -    | V    |  |
| Junction capacitance                                                     | 1MHz, V <sub>R</sub> = 0V                   | Сл               | -    | 24.5 | 30   | pF   |  |
| Dynamic resistance <sup>(2)</sup>                                        |                                             | R <sub>DYN</sub> | -    | 0.38 | -    | Ω    |  |

## Notes:

- 1. Non-repetitive current pulse, according to IEC61000-4-5.
- 2. TLP parameter:  $Z_0$  = 50  $\Omega$ , tp = 100ns, tr = 2ns, averaging window from 60ns to 80ns. RDYN is calculated from 4A to 16A.

| ORDERING INFORMATION |         |                        |  |  |  |  |
|----------------------|---------|------------------------|--|--|--|--|
| ORDERING CODE        | PACKAGE | PACKING                |  |  |  |  |
| TESDA24VB30P2CX RFG  | SOT-23  | 3,000 / 7" Tape & Reel |  |  |  |  |


2



### **CHARACTERISTICS CURVES**

(T<sub>A</sub> = 25°C unless otherwise noted)

Fig.1 Peak Pulse Power vs. Junction Temperature Fig.2 Non-Repetitive Peak Pulse Power vs. Pulse Time



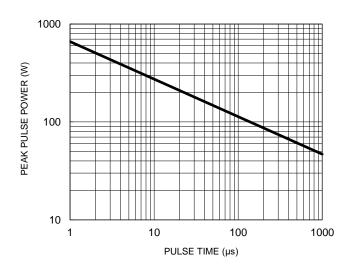
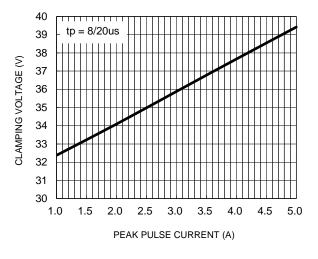




Fig.3 Clamping Voltage vs. Peak Pulse Current

Fig.4 Capacitance vs. Reverse Voltage



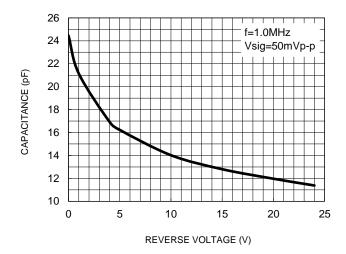
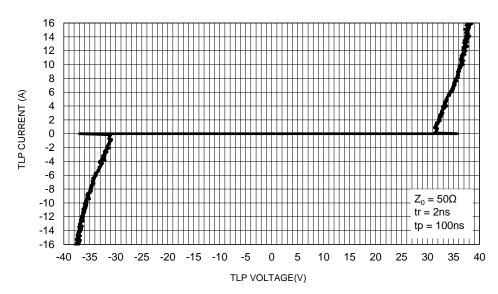




Fig.5 TLP Curve





## **CHARACTERISTICS CURVES**

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$ 

Fig.6 8/20µs pulse waveform per IEC61000-4-5

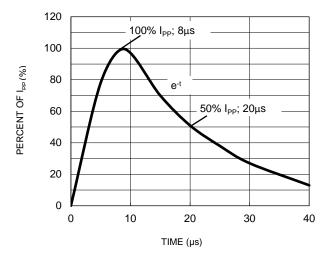
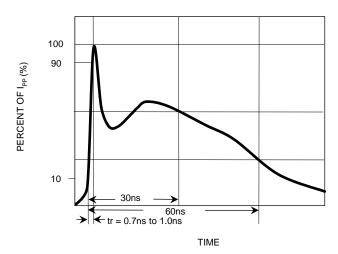




Fig.7 ESD pulse waveform per IEC61000-4-2



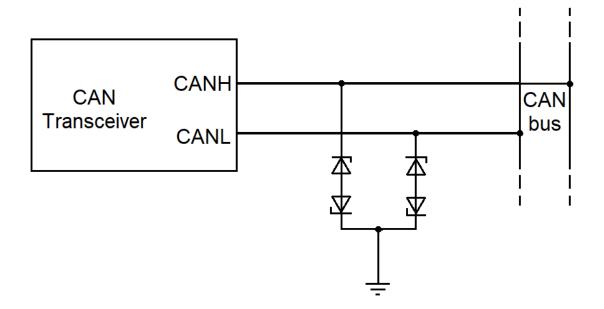
Version: A2403

4



### **APPLICATION INFORMATION**

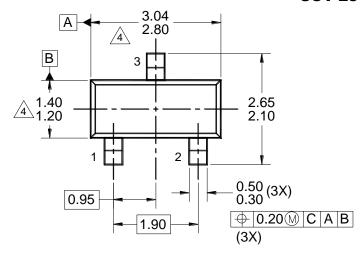
#### **Device Connection**

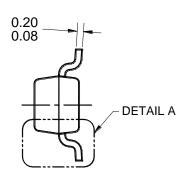

The TESDA24VB30P2CX is designed for the protection of two automotive IVN bus lines from the damage caused by ESD and surge pulses. It provides bidirectional protection.

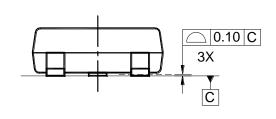
The usage of the TESDA24VB30P2CX is shown in Fig1.Protected line. In order to minimize parasitic inductance in the board traces, all path lengths connected to the pins of TESDA24VB30P2CX should be kept as short as possible.

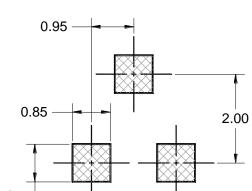
In order to obtain enough suppression of ESD induced transient, good circuit board is critical. Thus, the following guidelines are recommended:

- Let the path length between the protected lines and the TESDA24VB30P2CX minimize.
- Place the TESDA24VB30P2CX near the input terminals or connectors to restrict transient coupling.
- The ESD current return path to ground should be kept as short as possible.
- · Use ground planes whenever possible.


Fig.1 ESD protection of two automotive CAN bus lines by TESDA24VB30P2CX



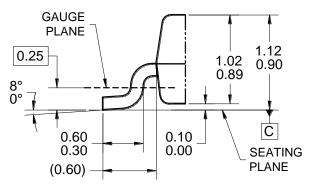


### **PACKAGE OUTLINE DIMENSIONS**

### **SOT-23**

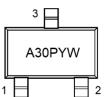









0.85


NOTES: UNLESS OTHERWISE SPECIFIED

SUGGESTED PAD LAYOUT

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. PACKAGE OUTLINE REFERENCE: JEDEC TO-236, ISSUE H, VARIATION AB.
- 4\ MOLDED PLASTIC BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 5. DWG NO. REF: HQ2SD07-SOT23SSD-105 REV A.



DETAIL A, ROTATED -90° (SCALE 2:1)



MARKING DIAGRAM

A30P = Device Code Y = Year code W = Bi-Week Code (A~Z)



Taiwan Semiconductor

# **Notice**

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.