

200mW, Dual PNP Small Signal Transistor

FEATURES

- AEC-Q101 qualified
- General-purpose transistors
- Ideal for automated placement
- Moisture sensitivity level: level 1, per J-STD-020
- RoHS Compliant
- Halogen-free

APPLICATIONS

· General switching and amplification

MECH	ΔΝΙζΔΙ	DATA

Case: SOT-363

Molding compound meets UL 94V-0 flammability rating

• Terminal: Matte tin plated leads, solderable per J-STD-002

Meet JESD 201 class 2 whisker test

• Weight: 6.99mg (approximately)

KEY PARAMETERS			
PARAMETER	VALUE	UNIT	
V _{CBO}	-80	V	
Vceo	-65	V	
V _{EBO}	-5	V	
Ic	-100	mA	
h _{FE}	450		
Configuration	Dual die		

PACKAGE: SOT-363	PIN CONFIGURATION	CIRCUIT DIAGRAM
6 de la	6 4	#1 E1 B1 C2

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise noted)			
PARAMETER	SYMBOL	VALUE	UNIT
Power dissipation ⁽¹⁾	P _D	200	mW
Collector-base voltage	V _{CBO}	-80	V
Collector-emitter voltage	Vceo	-65	V
Emitter-base voltage	V _{EBO}	-5	V
Collector current	Ic	-100	mA
Junction temperature	TJ	-55 to +150	°C
Storage temperature	T _{STG}	-55 to +150	°C

Note:

1. Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated and standard footprint

THERMAL PERFORMANCE			
PARAMETER	SYMBOL	TYP	UNIT
Junction-to-ambient thermal resistance ⁽¹⁾	R _{ΘJA}	625	°C/W

Thermal Performance Note:

1. Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated and standard footprint

ELECTRICAL SPECIFICATIONS (T _A = 25°C unless otherwise noted)						
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNIT
Collector-base	I _C = -10μA, I _E = 0A	V _{(BR)CBO}	-80	_	_	V
breakdown voltage	ις = τομλ, ιε = ολ	V (BR)CBO	00			V
Collector-emitter	$I_{C} = -10 \text{mA}, I_{B} = 0 \text{A}$	V _{(BR)CEO}	-65	_	_	V
breakdown voltage	IC = TOTA, IB = OA	V (BR)CEO	-03	-	-	v
Emitter-base	$I_E = -10\mu A, I_C = 0A$	V _{(BR)EBO}	-5	_	_	V
breakdown voltage	1ε = -10μΛ, 1ς = 0Λ	V (BR)EBO	3			V
Collector-base	V _{CB} = -30V. I _F = 0A	I _{CBO}	_	_	-15	nA
cut-off current	VCB = -30 V, IE = 0A	ICBO	_	_	-10	11/3
Emitter-base	V _{EB} = -5V, I _C = 0A	l _{EBO}	_	_	-0.1	μA
cut-off current	VEB = -5V, IC = UA	IEBO	_	_	-0.1	μΛ
DC current gain	$V_{CE} = -5V$, $I_{C} = -2mA$	h _{FE}	200	-	450	-
Collector-emitter	$I_C = -10 \text{mA}, I_B = -0.5 \text{mA}$		-	-	-0.1	.,
saturation voltage	$I_C = -100 \text{mA}, I_B = -5 \text{mA}$	$I_C = -100$ mA, $I_B = -5$ mA		-	-0.3	V
Base-emitter	1 1000 1 0 500 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		-750	-850	\/
saturation voltage	$I_C = -10 \text{mA}, I_B = -0.5 \text{mA}$	V _{BE(sat)}	-	-750	-650	mV
Base-emitter voltage	$V_{CE} = -5V$, $I_C = -2mA$	V _{BE}	-	-	-750	mV
Transition frequency	V _{CE} = -5V, I _C = -10mA, f = 100MHz	f⊤	100	-	-	MHz
Output capacitance	V _{CB} = -10V, I _E = 0A, f = 1MHz	Cobo	-	-	4.5	pF

ORDERING AND MARKING INFORMATION			
ORDERING CODE	PACKAGE	PACKING	
BC856BSH RFG	SOT-363	3,000 / 7" Tape & Reel	

CHARACTERISTICS CURVES

(T_A = 25°C unless otherwise noted)

Fig.1 Power Dissipation Curve

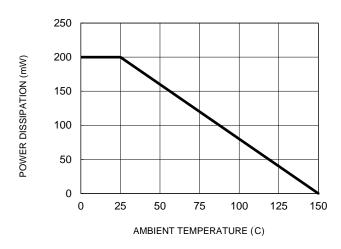


Fig.3 DC Current Gain vs. Collector Current

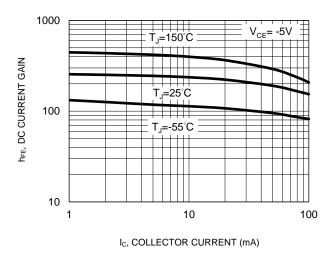


Fig.5 Base-Emitter Saturation Voltage vs. Collector Current

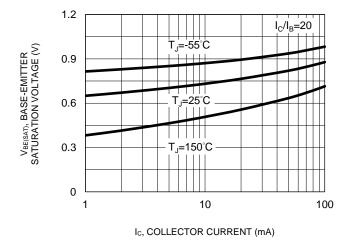
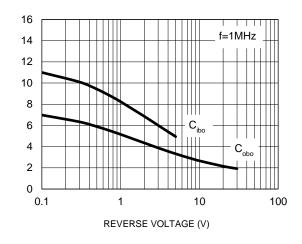
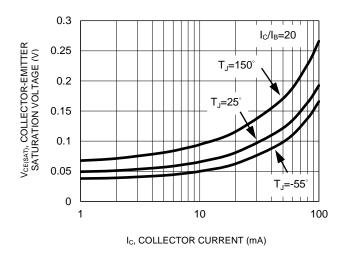
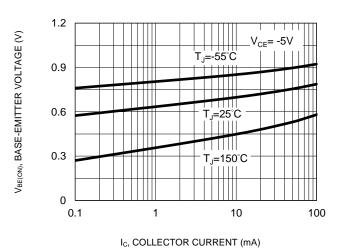
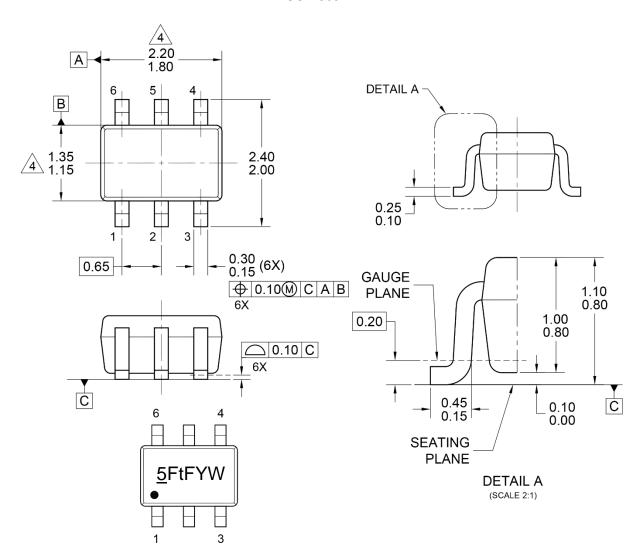



Fig.2 Typical Capacitance Characteristics

CAPACITANCE (pF)

Fig.4 Collector-Emitter Saturation Voltage vs.
Collector Current

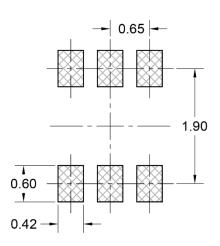




Fig.6 Base-Emitter Voltage vs. Collector Current

PACKAGE OUTLINE DIMENSIONS

SOT-363

MARKING DIAGRAM


<u>5</u>Ft = Device markingF = Factory code

Y = Year code

W = Bi-Week code (A~Z)

NOTES: UNLESS OTHERWISE SPECIFIED

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. PACKAGE OUTLINE REFERENCE: JEITA ED-7500A, EIAJ SC-88.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 5. DWG NO. REF: HQ2SD07-SOT363-097 REV B.

SUGGESTED PAD LAYOUT

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.